Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38421067

RESUMO

The exchange-only virial relation due to Levy and Perdew is revisited. Invoking the adiabatic connection, we introduce the exchange energy in terms of the right-derivative of the universal density functional w.r.t. the coupling strength λ at λ = 0. This agrees with the Levy-Perdew definition of the exchange energy as a high-density limit of the full exchange-correlation energy. By relying on v-representability for a fixed density at varying coupling strength, we prove an exchange-only virial relation without an explicit local-exchange potential. Instead, the relation is in terms of a limit (λ ↘ 0) involving the exchange-correlation potential vxcλ, which exists by assumption of v-representability. On the other hand, a local-exchange potential vx is not warranted to exist as such a limit.

2.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38189616

RESUMO

We propose exchanging the energy functionals in ground-state density-functional theory with physically equivalent exact force expressions as a new promising route toward approximations to the exchange-correlation potential and energy. In analogy to the usual energy-based procedure, we split the force difference between the interacting and auxiliary Kohn-Sham system into a Hartree, an exchange, and a correlation force. The corresponding scalar potential is obtained by solving a Poisson equation, while an additional transverse part of the force yields a vector potential. These vector potentials obey an exact constraint between the exchange and correlation contribution and can further be related to the atomic shell structure. Numerically, the force-based local-exchange potential and the corresponding exchange energy compare well with the numerically more involved optimized effective potential method. Overall, the force-based method has several benefits when compared to the usual energy-based approach and opens a route toward numerically inexpensive nonlocal and (in the time-dependent case) nonadiabatic approximations.

3.
ACS Phys Chem Au ; 3(6): 492-511, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38034040

RESUMO

The Hohenberg-Kohn theorem of density-functional theory (DFT) is broadly considered the conceptual basis for a full characterization of an electronic system in its ground state by just one-body particle density. In this Part II of a series of two articles, we aim at clarifying the status of this theorem within different extensions of DFT including magnetic fields. We will in particular discuss current-density-functional theory (CDFT) and review the different formulations known in the literature, including the conventional paramagnetic CDFT and some nonstandard alternatives. For the former, it is known that the Hohenberg-Kohn theorem is no longer valid due to counterexamples. Nonetheless, paramagnetic CDFT has the mathematical framework closest to standard DFT and, just like in standard DFT, nondifferentiability of the density functional can be mitigated through Moreau-Yosida regularization. Interesting insights can be drawn from both Maxwell-Schrödinger DFT and quantum-electrodynamic DFT, which are also discussed here.

4.
J Phys Chem A ; 127(43): 9106-9120, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37874274

RESUMO

We propose a novel a posteriori error assessment for the single-reference coupled-cluster (SRCC) method called the S-diagnostic. We provide a derivation of the S-diagnostic that is rooted in the mathematical analysis of different SRCC variants. We numerically scrutinized the S-diagnostic, testing its performance for (1) geometry optimizations, (2) electronic correlation simulations of systems with varying numerical difficulty, and (3) the square-planar copper complexes [CuCl4]2-, [Cu(NH3)4]2+, and [Cu(H2O)4]2+. Throughout the numerical investigations, the S-diagnostic is compared to other SRCC diagnostic procedures, that is, the T1, D1, max T2, and D2 diagnostics as well as different indices of multideterminantal and multireference character in coupled-cluster theory. Our numerical investigations show that the S-diagnostic outperforms the T1, D1, max T2 and D2 diagnostics and is comparable to the indices of multideterminantal and multireference character in coupled-cluster theory in their individual fields of applicability. The experiments investigating the performance of the S-diagnostic for geometry optimizations using SRCC reveal that the S-diagnostic correlates well with different error measures at a high level of statistical relevance. The experiments investigating the performance of the S-diagnostic for electronic correlation simulations show that the S-diagnostic correctly predicts strong multireference regimes. The S-diagnostic, moreover, correctly detects the successful SRCC computations for [CuCl4]2-, [Cu(NH3)4]2+, and [Cu(H2O)4]2+, which have been known to be misdiagnosed by T1 and D1 diagnostics in the past. This shows that the S-diagnostic is a promising candidate for an a posteriori diagnostic for SRCC calculations.

5.
ACS Phys Chem Au ; 3(4): 334-347, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37520314

RESUMO

The Hohenberg-Kohn theorem of density-functional theory (DFT) is broadly considered the conceptual basis for a full characterization of an electronic system in its ground state by just the one-body particle density. Part I of this review aims at clarifying the status of the Hohenberg-Kohn theorem within DFT and Part II at different extensions of the theory that include magnetic fields. We collect evidence that the Hohenberg-Kohn theorem does not so much form the basis of DFT, but is rather the consequence of a more comprehensive mathematical framework. Such results are especially useful when it comes to the construction of generalized DFTs.

6.
Phys Chem Chem Phys ; 24(47): 28700-28781, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36269074

RESUMO

In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.


Assuntos
Ciência dos Materiais , Humanos
7.
J Phys Condens Matter ; 33(29)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33848989

RESUMO

Density-functional theory (DFT) requires an extra variable besides the electron density in order to properly incorporate magnetic-field effects. In a time-dependent setting, the gauge-invariant, total current density takes that role. A peculiar feature of the static ground-state setting is, however, that the gauge-dependent paramagnetic current density appears as the additional variable instead. An alternative, exact reformulation in terms of the total current density has long been sought but to date a work by Diener is the only available candidate. In that work, an unorthodox variational principle was used to establish a ground-state DFT of the total current density as well as an accompanying Hohenberg-Kohn-like result. We here reinterpret and clarify Diener's formulation based on a maximin variational principle. Using simple facts about convexity implied by the resulting variational expressions, we prove that Diener's formulation is unfortunately not capable of reproducing the correct ground-state energy and, furthermore, that the suggested construction of a Hohenberg-Kohn map contains an irreparable mistake.

8.
J Phys Chem Lett ; 12(5): 1421-1425, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33522817

RESUMO

A cornerstone of current-density functional theory (CDFT) in its paramagnetic formulation is proven. After a brief outline of the mathematical structure of CDFT, the lower semicontinuity and expectation-valuedness of the CDFT constrained-search functional is proven, meaning that there is always a minimizing density matrix in the CDFT constrained-search universal density functional. These results place the mathematical framework of CDFT on the same footing as that of standard DFT.

9.
J Chem Phys ; 152(23): 234112, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32571061

RESUMO

We investigate and prove Lieb-Oxford bounds in one dimension by studying convex potentials that approximate the ill-defined Coulomb potential. A Lieb-Oxford inequality establishes a bound of the indirect interaction energy for electrons in terms of the one-body particle density ρψ of a wave function ψ. Our results include modified soft Coulomb potential and regularized Coulomb potential. For these potentials, we establish Lieb-Oxford-type bounds utilizing logarithmic expressions of the particle density. Furthermore, a previous conjectured form Ixc(ψ)≥-C1∫Rρψ(x)2dx is discussed for different convex potentials.

10.
Int J Quantum Chem ; 120(8): e26149, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34853481

RESUMO

The unique-continuation property from sets of positive measure is here proven for the many-body magnetic Schrödinger equation. This property guarantees that if a solution of the Schrödinger equation vanishes on a set of positive measure, then it is identically zero. We explicitly consider potentials written as sums of either one-body or two-body functions, typical for Hamiltonians in many-body quantum mechanics. As a special case, we are able to treat atomic and molecular Hamiltonians. The unique-continuation property plays an important role in density-functional theories, which underpins its relevance in quantum chemistry.

11.
Phys Rev Lett ; 125(24): 249902, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33412076

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.123.037401.

12.
Phys Rev Lett ; 123(3): 037401, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386444

RESUMO

The exact Kohn-Sham iteration of generalized density-functional theory in finite dimensions with a Moreau-Yosida regularized universal Lieb functional and an adaptive damping step is shown to converge to the correct ground-state density.

13.
J Chem Theory Comput ; 15(7): 4003-4020, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31063689

RESUMO

Recent work has established Moreau-Yosida regularization as a mathematical tool to achieve rigorous functional differentiability in density-functional theory. In this article, we extend this tool to paramagnetic current-density-functional theory, the most common density-functional framework for magnetic field effects. The extension includes a well-defined Kohn-Sham iteration scheme with a partial convergence result. To this end, we rely on a formulation of Moreau-Yosida regularization for reflexive and strictly convex function spaces. The optimal L p-characterization of the paramagnetic current density L1 ∩ L3/2 is derived from the N-representability conditions. A crucial prerequisite for the convex formulation of paramagnetic current-density-functional theory, termed compatibility between function spaces for the particle density and the current density, is pointed out and analyzed. Several results about compatible function spaces are given, including their recursive construction. The regularized, exact functionals are calculated numerically for a Kohn-Sham iteration on a quantum ring, illustrating their performance for different regularization parameters.

14.
J Chem Theory Comput ; 15(4): 2206-2220, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30802406

RESUMO

In this article, we investigate the numerical and theoretical aspects of the coupled-cluster method tailored by matrix-product states. We investigate formal properties of the used method, such as energy size consistency and the equivalence of linked and unlinked formulation. The existing mathematical analysis is here elaborated in a quantum chemical framework. In particular, we highlight the use of what we have defined as a complete active space-external space gap describing the basis splitting between the complete active space and the external part generalizing the concept of a HOMO-LUMO gap. Furthermore, the behavior of the energy error for an optimal basis splitting, i.e., an active space choice minimizing the density matrix renormalization group-tailored coupled-cluster singles doubles error, is discussed. We show numerical investigations on the robustness with respect to the bond dimensions of the single orbital entropy and the mutual information, which are quantities that are used to choose a complete active space. Moreover, the dependence of the ground-state energy error on the complete active space has been analyzed numerically in order to find an optimal split between the complete active space and external space by minimizing the density matrix renormalization group-tailored coupled-cluster error.

15.
J Chem Phys ; 149(16): 164103, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384752

RESUMO

A detailed account of the Kohn-Sham (KS) algorithm from quantum chemistry, formulated rigorously in the very general setting of convex analysis on Banach spaces, is given here. Starting from a Levy-Lieb-type functional, its convex and lower semi-continuous extension is regularized to obtain differentiability. This extra layer allows us to rigorously introduce, in contrast to the common unregularized approach, a well-defined KS iteration scheme. Convergence in a weak sense is then proven. This generalized formulation is applicable to a wide range of different density-functional theories and possibly even to models outside of quantum mechanics.

16.
J Chem Phys ; 148(2): 024101, 2018 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-29331113

RESUMO

We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...